Петербургский Государственный Университет Пут	гей Сообщения
Лабораторная работа №1	
"Анализ предельного поведения вероятносте	й событий"
Вариант - 8	
	Выполнил: студент группы ПВТ-711 Круглов В.А.
	Проверил:

Цель работы

Определение вероятности $\overline{P}(t)$. Построение графика этих вероятностей и оценка момента времени, при котором вероятности становятся стационарными. Нахождение этих стационарных вероятностей.

Вариант индивидуального задания

$$P(0) = (1,0,0,0,0)$$

$$A = \begin{pmatrix} -10 & 2 & 3 & 1 & 4 \\ 1 & -8 & 2 & 3 & 2 \\ 0 & 1 & -7 & 3 & 3 \\ 2 & 0 & 1 & -5 & 2 \\ 1 & 2 & 1 & 2 & -6 \end{pmatrix}$$

Теоретическая часть

Математическая теория систем с очередями изучает случайные процессы, связанные с числом требований, находящихся в данный момент времени в системе. В основе математической модели широкого класса СМО лежат Марковские случайные процессы. Марковские процессы обладают тем свойством, что если известно значение процесса в момент времени t, то вероятности будущих значений процесса при s > t не зависит от прошлых значений процесса при s < t, другими словами, вероятности значений Марковского процесса после момента времени t не зависят от того, какие значения принимали и как вел себя процесс до момента времени t. Марковские случайные процессы с дискретным множеством состояний называют цепями Маркова.

Основные используемые формулы.

Дифференциальные уравнения Колмагорова имеют вид:

- 1. $P'(t) = P(t)\Lambda$
- 2. $\overline{P}'(t) = \overline{P}(t)\Lambda$

где $\Lambda = \|\lambda_{ij}\|$ - инфинитезимальная матрица $\lambda_{ij} \geq 0, i \neq j,$ и $\lambda_{ii} < 0, \sum_j \lambda_{ij} = 0.$

Решение этих уравнений имеет вид:

- 3. $P(t) = e^{\Lambda t}$
- 4. $\overline{P}(t) = \overline{P}(0)e^{\Lambda t}$

Уравнения для стационарных вероятностей состояний $\overline{P}=(p_0,p_1,p_2,\dots)$

5. $\overline{P}\Lambda = 0$, $\sum_k p_k = 1$, где \overline{P} - это стационарные вероятности, удовлетворяющие при t>0 уравнению $\overline{P} = \overline{P} \cdot P(t)$, которое означает, что если процесс начинается в состоянии I с вероятностью p_i , то и в любой последующий момент времени он будет находиться в состоянии I с той же вероятностью p_i .

Код программы для решения задачи

1я часть. Определение $\overline{P}(t)$ по формуле 4.

```
P0=[1 0 0 0 0];
m=length(P0);
Lambda=[-10 2 3 1 4; 1 -8 2 3 2; 0 1 -7 3 3; 2 0 1 -5 2; 1 2 1 2 -6];
h=0.01;
Tfin=input('Введите финальный момент времени');
t=0:h:Tfin;
k=length(t);
P=zeros(m,k);
for j=1:k
    P(:,j)=(P0*expm(Lambda*t(j))';
end;
plot(t,P(1,:),t,P(2,:),t,P(3,:));
disp(P(:,k-1:k));
```

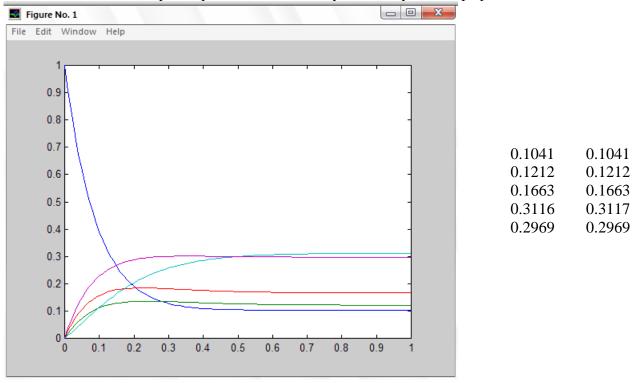
2я часть. Определение стационарных вероятностей \overline{P} по уравнениям 5.

```
Lambda=[-10 2 3 1 4; 1 -8 2 3 2; 0 1 -7 3 3; 2 0 1 -5 2; 1 2 1 2 -6];
s=length(Lambda(1,:));
ed=ones(1,s);
A=cat(2,Lambda(:,1:s-1),ed');
B=zeros(1,s);
B(s)=1;
Pst=B/A;
```

Результаты работы программы

1я часть. Определение $\overline{P}(t)$ по формуле 4.

Введем конечный интервал времени t = 1 и получим следующий график:



2я часть. Определение стационарных вероятностей $\overline{\mathbf{P}}$ по уравнениям 5.

Результатом работы программы являются следующие стационарные вероятности: $Pst = 0.1042 \quad 0.1210 \quad 0.1662 \quad 0.3119 \quad 0.2968$

Вывод

В данной лабораторной работе были определены стационарные вероятности $\bar{P}(t)$, построен график по которому можно оценить момент времени, при котором вероятности становятся стационарными. Кроме того, подсчитаны эти стационарные вероятности. Таким образом, в работе показано, что если процесс начинается в состоянии I с вероятностью p_i , то и в любой последующий момент времени он будет находиться в состоянии I с той же вероятностью p_i .